Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 176 - 200 of 237 results
176.

Reversible induction of mitophagy by an optogenetic bimodular system.

blue iLID ETNA HEK293T HeLa human T cells zebrafish in vivo Organelle manipulation
Nat Commun, 4 Apr 2019 DOI: 10.1038/s41467-019-09487-1 Link to full text
Abstract: Autophagy-mediated degradation of mitochondria (mitophagy) is a key process in cellular quality control. Although mitophagy impairment is involved in several patho-physiological conditions, valuable methods to induce mitophagy with low toxicity in vivo are still lacking. Herein, we describe a new optogenetic tool to stimulate mitophagy, based on light-dependent recruitment of pro-autophagy protein AMBRA1 to mitochondrial surface. Upon illumination, AMBRA1-RFP-sspB is efficiently relocated from the cytosol to mitochondria, where it reversibly mediates mito-aggresome formation and reduction of mitochondrial mass. Finally, as a proof of concept of the biomedical relevance of this method, we induced mitophagy in an in vitro model of neurotoxicity, fully preventing cell death, as well as in human T lymphocytes and in zebrafish in vivo. Given the unique features of this tool, we think it may turn out to be very useful for a wide range of both therapeutic and research applications.
177.

Optically inducible membrane recruitment and signaling systems.

blue cyan near-infrared Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Curr Opin Struct Biol, 15 Mar 2019 DOI: 10.1016/j.sbi.2019.01.017 Link to full text
Abstract: Optical induction of intracellular signaling by membrane-associated and integral membrane proteins allows spatiotemporally precise control over second messenger signaling and cytoskeletal rearrangements that are important to cell migration, development, and proliferation. Optogenetic membrane recruitment of a protein-of-interest to control its signaling by altering subcellular localization is a versatile means to these ends. Here, we summarize the signaling characteristics and underlying structure-function of RGS-LOV photoreceptors as single-component membrane recruitment tools that rapidly, reversibly, and efficiently carry protein cargo from the cytoplasm to the plasma membrane by a light-regulated electrostatic interaction with the membrane itself. We place the technology-relevant features of these recently described natural photosensory proteins in context of summarized protein engineering and design strategies for optically controlling membrane protein signaling.
178.

Mimicking Adhesion in Minimal Synthetic Cells.

blue LOV domains Review
Adv Biosyst, 25 Feb 2019 DOI: 10.1002/adbi.201800333 Link to full text
Abstract: Cell adhesions to the extracellular matrix and to neighboring cells are fundamental to cell behavior and have also been implemented into minimal synthetic cells, which are assembled from molecular building blocks from the bottom-up. Investigating adhesion in cell mimetic models with reduced complexity provides a better understanding of biochemical and biophysical concepts underlying the cell adhesion machinery. In return, implementing cell-matrix and cell-cell adhesions into minimal synthetic cells allows reconstructing cell functions associated with cell adhesions including cell motility, multicellular prototissues, fusion of vesicles, and the self-sorting of different cell types. Cell adhesions have been mimicked using both the native cell receptors and reductionist mimetics providing a variety of specific, reversible, dynamic, and spatiotemporally controlled interactions. This review gives an overview of different minimal adhesion modules integrated into different minimal synthetic cells drawing inspiration from cell and colloidal science.
179.

Photodimerization systems for regulating protein-protein interactions with light.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Curr Opin Struct Biol, 25 Feb 2019 DOI: 10.1016/j.sbi.2019.01.021 Link to full text
Abstract: Optogenetic dimerizers are modular domains that can be utilized in a variety of versatile ways to modulate cellular biochemistry. Because of their modularity, many applications using these tools can be easily transferred to new targets without extensive engineering. While a number of photodimerizer systems are currently available, the field remains nascent, with new optimizations for existing systems and new approaches to regulating biological function continuing to be introduced at a steady pace.
180.

Physical Plasma Membrane Perturbation Using Subcellular Optogenetics Drives Integrin-Activated Cell Migration.

blue CRY2/CIB1 iLID RAW264.7 Control of cytoskeleton / cell motility / cell shape
ACS Synth Biol, 22 Feb 2019 DOI: 10.1021/acssynbio.8b00356 Link to full text
Abstract: Cells experience physical deformations to the plasma membrane that can modulate cell behaviors like migration. Understanding the molecular basis for how physical cues affect dynamic cellular responses requires new approaches that can physically perturb the plasma membrane with rapid, reversible, subcellular control. Here we present an optogenetic approach based on light-inducible dimerization that alters plasma membrane properties by recruiting cytosolic proteins at high concentrations to a target site. Surprisingly, this polarized accumulation of proteins in a cell induces directional amoeboid migration in the opposite direction. Consistent with known effects of constraining high concentrations of proteins to a membrane in vitro, there is localized curvature and tension decrease in the plasma membrane. Integrin activity, sensitive to mechanical forces, is activated in this region. Localized mechanical activation of integrin with optogenetics allowed simultaneous imaging of the molecular and cellular response, helping uncover a positive feedback loop comprising SFK- and ERK-dependent RhoA activation, actomyosin contractility, rearward membrane flow, and membrane tension decrease underlying this mode of cell migration.
181.

Signaling Dynamics Control Cell Fate in the Early Drosophila Embryo.

blue iLID D. melanogaster in vivo Signaling cascade control Developmental processes
Dev Cell, 11 Feb 2019 DOI: 10.1016/j.devcel.2019.01.009 Link to full text
Abstract: The Erk mitogen-activated protein kinase plays diverse roles in animal development. Its widespread reuse raises a conundrum: when a single kinase like Erk is activated, how does a developing cell know which fate to adopt? We combine optogenetic control with genetic perturbations to dissect Erk-dependent fates in the early Drosophila embryo. We find that Erk activity is sufficient to "posteriorize" 88% of the embryo, inducing gut endoderm-like gene expression and morphogenetic movements in all cells within this region. Gut endoderm fate adoption requires at least 1 h of signaling, whereas a 30-min Erk pulse specifies a distinct ectodermal cell type, intermediate neuroblasts. We find that the endoderm-ectoderm cell fate switch is controlled by the cumulative load of Erk activity, not the duration of a single pulse. The fly embryo thus harbors a classic example of dynamic control, where the temporal profile of Erk signaling selects between distinct physiological outcomes.
182.

Developmental Erk Signaling Illuminated.

blue LOV domains Review
Dev Cell, 11 Feb 2019 DOI: 10.1016/j.devcel.2019.01.022 Link to full text
Abstract: How a small number of signaling pathways can be re-used in distinct embryonic contexts to control different fates remains unclear. In this issue of Developmental Cell, Johnson and Toettcher (2019) use optogenetic approaches to explore how different dynamic ERK signaling states control specific developmental fates in the Drosophila embryo.
183.

Optogenetic tools light up phase separation.

blue LOV domains Review
Nat Methods, 30 Jan 2019 DOI: 10.1038/s41592-019-0310-5 Link to full text
Abstract: Abstract not available.
184.

A Photoactivatable Botulinum Neurotoxin for Inducible Control of Neurotransmission.

blue CRY2/CIB1 iLID C. elegans in vivo HEK293T primary rat hippocampal neurons Control of vesicular transport Neuronal activity control
Neuron, 28 Jan 2019 DOI: 10.1016/j.neuron.2019.01.002 Link to full text
Abstract: Regulated secretion is critical for diverse biological processes ranging from immune and endocrine signaling to synaptic transmission. Botulinum and tetanus neurotoxins, which specifically proteolyze vesicle fusion proteins involved in regulated secretion, have been widely used as experimental tools to block these processes. Genetic expression of these toxins in the nervous system has been a powerful approach for disrupting neurotransmitter release within defined circuitry, but their current utility in the brain and elsewhere remains limited by lack of spatial and temporal control. Here we engineered botulinum neurotoxin B so that it can be activated with blue light. We demonstrate the utility of this approach for inducibly disrupting excitatory neurotransmission, providing a first-in-class optogenetic tool for persistent, light-triggered synaptic inhibition. In addition to blocking neurotransmitter release, this approach will have broad utility for conditionally disrupting regulated secretion of diverse bioactive molecules, including neuropeptides, neuromodulators, hormones, and immune molecules. VIDEO ABSTRACT.
185.

Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons.

blue cyan red Cryptochromes FKF1/G1 Fluorescent proteins LOV domains Phytochromes Review
Int J Mol Sci, 14 Dec 2018 DOI: 10.3390/ijms19124052 Link to full text
Abstract: Cellular activation of RAS GTPases into the GTP-binding "ON" state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson's disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets.
186.

A bright future: optogenetics to dissect the spatiotemporal control of cell behavior.

blue cyan BLUF domains Cryptochromes Fluorescent proteins LOV domains Review
Curr Opin Chem Biol, 4 Dec 2018 DOI: 10.1016/j.cbpa.2018.11.010 Link to full text
Abstract: Cells sense, process, and respond to extracellular information using signaling networks: collections of proteins that act as precise biochemical sensors. These protein networks are characterized by both complex temporal organization, such as pulses of signaling activity, and by complex spatial organization, where proteins assemble structures at particular locations and times within the cell. Yet despite their ubiquity, studying these spatial and temporal properties has remained challenging because they emerge from the entire protein network rather than a single node, and cannot be easily tuned by drugs or mutations. These challenges are being met by a new generation of optogenetic tools capable of directly controlling the activity of individual signaling nodes over time and the assembly of protein complexes in space. Here, we outline how these recent innovations are being used in conjunction with engineering-influenced experimental design to address longstanding questions in signaling biology.
187.

Mapping Local and Global Liquid Phase Behavior in Living Cells Using Photo-Oligomerizable Seeds.

blue iLID C. elegans in vivo HEK293 HeLa NIH/3T3 S. cerevisiae U-2 OS Organelle manipulation
Cell, 29 Nov 2018 DOI: 10.1016/j.cell.2018.10.048 Link to full text
Abstract: Liquid-liquid phase separation plays a key role in the assembly of diverse intracellular structures. However, the biophysical principles by which phase separation can be precisely localized within subregions of the cell are still largely unclear, particularly for low-abundance proteins. Here, we introduce an oligomerizing biomimetic system, ‘‘Corelets,’’ and utilize its rapid and quantitative light-controlled tunability to map full intracellular phase diagrams, which dictate the concentrations at which phase separation occurs and the transition mechanism, in a protein sequence dependent manner. Surprisingly, both experiments and simulations show that while intracellular concentrations may be insufficient for global phase separation, sequestering protein ligands to slowly diffusing nucleation centers can move the cell into a different region of the phase diagram, resulting in localized phase separation. This diffusive capture mechanism liberates the cell from the constraints of global protein abundance and is likely exploited to pattern condensates associated with diverse biological processes.
188.

Mechanobiology of Protein Droplets: Force Arises from Disorder.

blue Cryptochromes LOV domains Review
Cell, 29 Nov 2018 DOI: 10.1016/j.cell.2018.11.020 Link to full text
Abstract: The use of optogenetic approaches has revealed new roles for intracellular protein condensates described in two papers in this issue of Cell (Bracha et. al., 2018; Shin et al., 2018). These results show that growing condensates are able to exert mechanical forces resulting in chromatin rearrangement, establishing a new role for liquid-liquid phase separation in the mechanobiology of the cell.
189.

Liquid Nuclear Condensates Mechanically Sense and Restructure the Genome.

blue CRY2/CRY2 iLID HEK293 HEK293T NIH/3T3 U-2 OS Organelle manipulation
Cell, 29 Nov 2018 DOI: 10.1016/j.cell.2018.10.057 Link to full text
Abstract: Phase transitions involving biomolecular liquids are a fundamental mechanism underlying intracellular organization. In the cell nucleus, liquid-liquid phase separation of intrinsically disordered proteins (IDPs) is implicated in assembly of the nucleolus, as well as transcriptional clusters, and other nuclear bodies. However, it remains unclear whether and how physical forces associated with nucleation, growth, and wetting of liquid condensates can directly restructure chromatin. Here, we use CasDrop, a novel CRISPR-Cas9-based optogenetic technology, to show that various IDPs phase separate into liquid condensates that mechanically exclude chromatin as they grow and preferentially form in low-density, largely euchromatic regions. A minimal physical model explains how this stiffness sensitivity arises from lower mechanical energy associated with deforming softer genomic regions. Targeted genomic loci can nonetheless be mechanically pulled together through surface tension-driven coalescence. Nuclear condensates may thus function as mechanoactive chromatin filters, physically pulling in targeted genomic loci while pushing out non-targeted regions of the neighboring genome.
190.

Mitotic Spindle: Illuminating Spindle Positioning with a Biological Lightsaber.

blue LOV domains Review
Curr Biol, 19 Nov 2018 DOI: 10.1016/j.cub.2018.09.047 Link to full text
Abstract: In metazoans, positioning of the mitotic spindle is controlled by the microtubule-dependent motor protein dynein, which associates with the cell cortex. Using optogenetic tools, two new studies examine how the levels and activity of dynein are regulated at the cortex to ensure proper positioning of the mitotic spindle.
191.

Light-Guided Motility of a Minimal Synthetic Cell.

blue iLID in vitro Extracellular optogenetics
Nano Lett, 23 Oct 2018 DOI: 10.1021/acs.nanolett.8b03469 Link to full text
Abstract: Cell motility is an important but complex process; as cells move, new adhesions form at the front and adhesions disassemble at the back. To replicate this dynamic and spatiotemporally controlled asymmetry of adhesions and achieve motility in a minimal synthetic cell, we controlled the adhesion of a model giant unilamellar vesicle (GUV) to the substrate with light. For this purpose, we immobilized the proteins iLID and Micro, which interact under blue light and dissociate from each other in the dark, on a substrate and a GUV, respectively. Under blue light, the protein interaction leads to adhesion of the vesicle to the substrate, which is reversible in the dark. The high spatiotemporal control provided by light, allowed partly illuminating the GUV and generating an asymmetry in adhesions. Consequently, the GUV moves into the illuminated area, a process that can be repeated over multiple cycles. Thus, our system reproduces the dynamic spatiotemporal distribution of adhesions and establishes mimetic motility of a synthetic cell.
192.

Increasing spatial resolution of photoregulated GTPases through immobilized peripheral membrane proteins.

blue CRY2olig iLID HEK293T HeLa
Small GTPases, 5 Sep 2018 DOI: 10.1080/21541248.2018.1507411 Link to full text
Abstract: Light-induced dimerizing systems, e.g. iLID, are an increasingly utilized optogenetics tool to perturb cellular signaling. The major benefit of this technique is that it allows external spatiotemporal control over protein localization with sub-cellular specificity. However, when it comes to local recruitment of signaling components to the plasmamembrane, this precision in localization is easily lost due to rapid diffusion of the membrane anchor. In this study, we explore different approaches of countering the diffusion of peripheral membrane anchors, to the point where we detect immobilized fractions with iFRAP on a timescale of several minutes. One method involves simultaneous binding of the membrane anchor to a secondary structure, the microtubules. The other strategy utilizes clustering of the anchor into large immobile structures, which can also be interlinked by employing tandem recruitable domains. For both approaches, the anchors are peripheral membrane constructs, which also makes them suitable for in vitro use. Upon combining these slower diffusing anchors with recruitable guanine exchange factors (GEFs), we show that we can elicit much more localized morphological responses from Rac1 and Cdc42 as compared to a regular CAAX-box based membrane anchor in living cells. Thanks to these new slow diffusing anchors, more precisely defined membrane recruitment experiments are now possible.
193.

A compendium of chemical and genetic approaches to light-regulated gene transcription.

blue cyan green near-infrared red UV BLUF domains Cobalamin-binding domains Cryptochromes Cyanobacteriochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Crit Rev Biochem Mol Biol, 24 Jul 2018 DOI: 10.1080/10409238.2018.1487382 Link to full text
Abstract: On-cue regulation of gene transcription is an invaluable tool for the study of biological processes and the development and integration of next-generation therapeutics. Ideal reagents for the precise regulation of gene transcription should be nontoxic to the host system, highly tunable, and provide a high level of spatial and temporal control. Light, when coupled with protein or small molecule-linked photoresponsive elements, presents an attractive means of meeting the demands of an ideal system for regulating gene transcription. In this review, we cover recent developments in the burgeoning field of light-regulated gene transcription, covering both genetically encoded and small-molecule based strategies for optical regulation of transcription during the period 2012 till present.
194.

Shining light on spindle positioning.

blue LOV domains Review
Elife, 9 Jul 2018 DOI: 10.7554/elife.38748 Link to full text
Abstract: Optogenetic approaches are leading to a better understanding of the forces that determine the plane of cell division.
195.

"Rho"ing a Cellular Boat with Rearward Membrane Flow.

blue LOV domains Review
Dev Cell, 2 Jul 2018 DOI: 10.1016/j.devcel.2018.06.008 Link to full text
Abstract: The physicist Edward Purcell wrote in 1977 about mechanisms that cells could use to propel themselves in a low Reynolds number environment. Reporting in Developmental Cell, O'Neill et al. (2018) provide direct evidence for one of these mechanisms by optogenetically driving the migration of cells suspended in liquid through RhoA activation.
196.

Controlling Cells with Light and LOV.

blue AtLOV LOV domains Review
Adv Biosyst, 2 Jul 2018 DOI: 10.1002/adbi.201800098 Link to full text
Abstract: Optogenetics is a powerful method for studying dynamic processes in living cells and has advanced cell biology research over the recent past. Key to the successful application of optogenetics is the careful design of the light‐sensing module, typically employing a natural or engineered photoreceptor that links the exogenous light input to the cellular process under investigation. Light–oxygen–voltage (LOV) domains, a highly diverse class of small blue light sensors, have proven to be particularly versatile for engineering optogenetic input modules. These can function via diverse modalities, including inducible allostery, protein recruitment, dimerization, or dissociation. This study reviews recent advances in the development of LOV domain‐based optogenetic tools and their application for studying and controlling selected cellular functions. Focusing on the widely employed LOV2 domain from Avena sativa phototropin‐1, this review highlights the broad spectrum of engineering opportunities that can be explored to achieve customized optogenetic regulation. Finally, major bottlenecks in the development of optogenetic methods are discussed and strategies to overcome these with recent synthetic biology approaches are pointed out.
197.

Membrane Flow Drives an Adhesion-Independent Amoeboid Cell Migration Mode.

blue iLID RAW264.7 Control of cytoskeleton / cell motility / cell shape
Dev Cell, 21 Jun 2018 DOI: 10.1016/j.devcel.2018.05.029 Link to full text
Abstract: Cells migrate by applying rearward forces against extracellular media. It is unclear how this is achieved in amoeboid migration, which lacks adhesions typical of lamellipodia-driven mesenchymal migration. To address this question, we developed optogenetically controlled models of lamellipodia-driven and amoeboid migration. On a two-dimensional surface, migration speeds in both modes were similar. However, when suspended in liquid, only amoeboid cells exhibited rapid migration accompanied by rearward membrane flow. These cells exhibited increased endocytosis at the back and membrane trafficking from back to front. Genetic or pharmacological perturbation of this polarized trafficking inhibited migration. The ratio of cell migration and membrane flow speeds matched the predicted value from a model where viscous forces tangential to the cell-liquid interface propel the cell forward. Since this mechanism does not require specific molecular interactions with the surrounding medium, it can facilitate amoeboid migration observed in diverse microenvironments during immune function and cancer metastasis.
198.

Reversible Social Self-Sorting of Colloidal Cell-Mimics with Blue Light Switchable Proteins.

blue iLID Magnets in vitro Extracellular optogenetics
ACS Synth Biol, 21 Jun 2018 DOI: 10.1021/acssynbio.8b00250 Link to full text
Abstract: Towards the bottom-up assembly of synthetic cells from molecular building blocks it is an ongoing challenge to assemble micrometer sized compartments that host different processes into precise multicompartmental assemblies, also called prototissues. The difficulty lies in controlling interactions between different compartments dynamically both in space and time, as these interactions determine how they organize with respect to each other and how they work together. In this study, we have been able to control the self-assembly and social self-sorting of four different types of colloids, which we use as a model for synthetic cells, into two separate families with visible light. For this purpose we used two photoswitchable protein pairs (iLID/Nano and nHagHigh/pMagHigh) that both reversibly heterodimerize upon blue light exposure and dissociate from each other in the dark. These photoswitchable proteins provide non-invasive, dynamic and reversible remote control under biocompatible conditions over the self-assembly process with unprecedented spatial and temporal precision. In addition, each protein pair brings together specifically two different types of colloids. The orthogonality of the two protein pairs enables social self-sorting of a four component mixture into two distinct families of colloidal aggregates with controlled arrangements. These results will ultimately pave the way for the bottom-up assembly of multicompartment synthetic prototissues of a higher complexity, enabling us to control precisely and dynamically the organization of different compartments in space and time.
199.

Dynein-Dynactin-NuMA clusters generate cortical spindle-pulling forces as a multi-arm ensemble.

blue iLID HCT116 Control of cytoskeleton / cell motility / cell shape
Elife, 31 May 2018 DOI: 10.7554/elife.36559 Link to full text
Abstract: To position the mitotic spindle within the cell, dynamic plus ends of astral microtubules are pulled by membrane-associated cortical force-generating machinery. However, in contrast to the chromosome-bound kinetochore structure, how the diffusion-prone cortical machinery is organized to generate large spindle-pulling forces remains poorly understood. Here, we develop a light-induced reconstitution system in human cells. We find that induced cortical targeting of NuMA, but not dynein, is sufficient for spindle pulling. This spindle-pulling activity requires dynein-dynactin recruitment by NuMA's N-terminal long arm, dynein-based astral microtubule gliding, and NuMA's direct microtubule-binding activities. Importantly, we demonstrate that cortical NuMA assembles specialized focal structures that cluster multiple force-generating modules to generate cooperative spindle-pulling forces. This clustering activity of NuMA is required for spindle positioning, but not for spindle-pole focusing. We propose that cortical Dynein-Dynactin-NuMA (DDN) clusters act as the core force-generating machinery that organizes a multi-arm ensemble reminiscent of the kinetochore.
200.

Optogenetic reversible knocksideways, laser ablation, and photoactivation on the mitotic spindle in human cells.

blue iLID U-2 OS
Methods Cell Biol, 26 Apr 2018 DOI: 10.1016/bs.mcb.2018.03.024 Link to full text
Abstract: At the onset of mitosis, cells assemble the mitotic spindle, a dynamic micromachine made of microtubules and associated proteins. Although most of these proteins have been identified, it is still unknown how their collective behavior drives spindle formation and function. Over the last decade, RNA interference has been the main tool for revealing the role of spindle proteins. However, the effects of this method are evident only after a longer time period, leading to difficulties in the interpretation of phenotypes. Optogenetics is a novel technology that enables fast, reversible, and precise control of protein activity by utilization of light. In this chapter, we present an optogenetic knocksideways method for rapid and reversible translocation of proteins from the mitotic spindle to mitochondria using blue light. Furthermore, we discuss other optical approaches, such as laser ablation of microtubule bundles in the spindle and creation of reference marks on the bundles by photoactivation of photoactivatable GFP. Finally, we show how different optical perturbations can be combined in order to acquire deeper understanding of the mechanics of mitosis.
Submit a new publication to our database